380 research outputs found

    Modulational Instability and Complex Dynamics of Confined Matter-Wave Solitons

    Full text link
    We study the formation of bright solitons in a Bose-Einstein condensate of 7^7Li atoms induced by a sudden change in the sign of the scattering length from positive to negative, as reported in a recent experiment (Nature {\bf 417}, 150 (2002)). The numerical simulations are performed by using the 3D Gross-Pitaevskii equation (GPE) with a dissipative three-body term. We show that a number of bright solitons is produced and this can be interpreted in terms of the modulational instability of the time-dependent macroscopic wave function of the Bose condensate. In particular, we derive a simple formula for the number of solitons that is in good agreement with the numerical results of 3D GPE. By investigating the long time evolution of the soliton train solving the 1D GPE with three-body dissipation we find that adjacent solitons repel each other due to their phase difference. In addition, we find that during the motion of the soliton train in an axial harmonic potential the number of solitonic peaks changes in time and the density of individual peaks shows an intermittent behavior. Such a complex dynamics explains the ``missing solitons'' frequently found in the experiment.Comment: to be published in Phys. Rev. Let

    Modulational instability in nonlocal Kerr-type media with random parameters

    Full text link
    Modulational instability of continuous waves in nonlocal focusing and defocusing Kerr media with stochastically varying diffraction (dispersion) and nonlinearity coefficients is studied both analytically and numerically. It is shown that nonlocality with the sign-definite Fourier images of the medium response functions suppresses considerably the growth rate peak and bandwidth of instability caused by stochasticity. Contrary, nonlocality can enhance modulational instability growth for a response function with negative-sign bands.Comment: 6 pages, 12 figures, revTeX, to appear in Phys. Rev.

    The Australia Telescope campaign to study southern class I methanol masers

    Full text link
    The Australia Telescope Compact Array (ATCA) and the Mopra facility have been used to search for new southern class I methanol masers at 9.9, 25 (J=5) and 104 GHz, which are thought to trace more energetic conditions in the interface regions of molecular outflows, than the widespread class I masers at 44 and 95 GHz. One source shows a clear outflow association.Comment: 2 pages, 1 figure (composed from 3 files), to appear in proceedings of IAU Symposium 242 "Astrophysical masers and their environment" (eds. J. Chapman and W. Baan

    Modulational instability and nonlocality management in coupled NLS system

    Full text link
    The modulational instability of two interacting waves in a nonlocal Kerr-type medium is considered analytically and numerically. For a generic choice of wave amplitudes, we give a complete description of stable/unstable regimes for zero group-velocity mismatch. It is shown that nonlocality suppresses considerably the growth rate and bandwidth of instability. For nonzero group-velocity mismatch we perform a geometrical analysis of a nonlocality management which can provide stability of waves otherwise unstable in a local medium.Comment: 15 pages, 12 figures, to be published in Physica Script

    Langmuir wave linear evolution in inhomogeneous nonstationary anisotropic plasma

    Full text link
    Equations describing the linear evolution of a non-dissipative Langmuir wave in inhomogeneous nonstationary anisotropic plasma without magnetic field are derived in the geometrical optics approximation. A continuity equation is obtained for the wave action density, and the conditions for the action conservation are formulated. In homogeneous plasma, the wave field E universally scales with the electron density N as E ~ N^{3/4}, whereas the wavevector evolution varies depending on the wave geometry

    Pattern Forming Dynamical Instabilities of Bose-Einstein Condensates: A Short Review

    Get PDF
    In this short topical review, we revisit a number of works on the pattern-forming dynamical instabilities of Bose-Einstein condensates in one- and two-dimensional settings. In particular, we illustrate the trapping conditions that allow the reduction of the three-dimensional, mean field description of the condensates (through the Gross-Pitaevskii equation) to such lower dimensional settings, as well as to lattice settings. We then go on to study the modulational instability in one dimension and the snaking/transverse instability in two dimensions as typical examples of long-wavelength perturbations that can destabilize the condensates and lead to the formation of patterns of coherent structures in them. Trains of solitons in one-dimension and vortex arrays in two-dimensions are prototypical examples of the resulting nonlinear waveforms, upon which we briefly touch at the end of this review.Comment: 28 pages, 9 figures, publishe

    Class I methanol masers in the outflow of IRAS 16547-4247

    Get PDF
    The Australia Telescope Compact Array (ATCA) has been used to image class I methanol masers at 9.9, 25 (a series from J=2 to J=9), 84, 95 and 104 GHz located in the vicinity of IRAS 16547-4247 (G343.12-0.06), a luminous young stellar object known to harbour a radio jet. The detected maser emission consists of a cluster of 6 spots spread over an area of 30 arcsec. Five spots were detected in only the 84- and 95-GHz transitions (for two spots the 84-GHz detection is marginal), while the sixth spot shows activity in all 12 observed transitions. We report the first interferometric observations of the rare 9.9- and 104-GHz masers. It is shown that the spectra contain a very narrow spike (<0.03 km/s) and the brightness temperature in these two transitions exceeds 5.3x10^7 and 2.0x10^4 K, respectively. The three most southern maser spots show a clear association with the shocked gas traced by the H_2 2.12 micron emission associated with the radio jet and their velocities are close to that of the molecular core within which the jet is embedded. This fact supports the idea that the class I masers reside in the interface regions of outflows. Comparison with OH masers and infrared data reveals a potential discrepancy in the expected evolutionary state. The presence of the OH masers usually means that the source is evolved, but the infrared data suggest otherwise. The lack of any class II methanol maser emission at 6.7 GHz in the source raises an additional question, is this source too young or too old to have a 6.7 GHz maser? We argue that both cases are possible and suggest that the evolutionary stage where the class I masers are active, may last longer and start earlier than when the class II masers are active. However, it is currently not possible to reveal the exact evolutionary status of IRAS 16547-4247.Comment: 14 pages, 6 figures, 4 tables, accepted by MNRA

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure

    Modulational Instability in Nonlinearity-Managed Optical Media

    Get PDF
    We investigate analytically, numerically, and experimentally the modulational instability in a layered, cubically-nonlinear (Kerr) optical medium that consists of alternating layers of glass and air. We model this setting using a nonlinear Schr\"odinger (NLS) equation with a piecewise constant nonlinearity coefficient and conduct a theoretical analysis of its linear stability, obtaining a Kronig-Penney equation whose forbidden bands correspond to the modulationally unstable regimes. We find very good {\it quantitative} agreement between the theoretical analysis of the Kronig-Penney equation, numerical simulations of the NLS equation, and the experimental results for the modulational instability. Because of the periodicity in the evolution variable arising from the layered medium, we find multiple instability regions rather than just the one that would occur in uniform media.Comment: 13 pages, 12 figures (several with multiple parts); some important changes from the page proof stage implemented in this preprint versio
    corecore